Dynamic Array
The updated code for the dynamic array header file is provided below. This now embeds the functionality within the dynamic array, making it a much more cohesive package to work with.
Dynamic Array Header
#ifndef DYNAMIC_ARRAY_HEADER#define DYNAMIC_ARRAY_HEADER
#include <cstdlib>#include <new>
/** * @brief A dynamic array struct that contains the size, capacity, * and data pointer used to implement this dynamic structure. * * @tparam T the type of data to store in the dynamic array * @field data a pointer to the data in the dynamic array on the heap * @field size the number of elements used in the dynamic array * @field capacity the number of elements the dynamic array can hold * @field default_value the default value to use when getting an element */template <typename T>struct dynamic_array{ T *data; unsigned int size; unsigned int capacity; T default_value;
/** * @brief Create a new dynamic array with the indicated initial capacity. * * @param capacity its initial capacity */ dynamic_array(unsigned int capacity, T default_value) { data = (T *)malloc(sizeof(T) * capacity); size = 0; this->default_value = default_value;
// For each of the new elements... call constructor for (int i = 0; i < capacity; i++) { // Call constructor to initialise each of the 10 elements new(&this->data[i]) T(); }
// Make sure that data was allocated, if not set capacity to 0 if (data == nullptr) { this->capacity = 0; } else { this->capacity = capacity; } }
/** * @brief Free the memory allocated to the dynamic array. Once freed * the data in the array will no longer be accessible. */ ~dynamic_array() { // Clear to ensure we remove any data from memory before freeing it size = 0;
// Call destructors on all elements for (int i = 0; i < capacity; i++) { data[i].~T(); }
capacity = 0;
// Free the data and the array itself free(data); // Ensure we don't have a dangling pointer data = nullptr; }
/** * @brief Resize the capacity of the dynamic array. * * If the new capacity is smaller than the current size, the size will be updated to match the new capacity. * * @param new_capacity the new capacity of the dynamic array * @returns true if this succeeded, or false if it could not reallocate memory */ bool resize(unsigned int new_capacity) { // Call destructors if we are reducing size for(int i = capacity - 1; i >= (int)new_capacity; i--) { data[i].~T(); }
// Resize the data in the array T *new_data = (T *)realloc(data, sizeof(T) * new_capacity); // Check if the allocation failed if (new_data == nullptr) { // We failed to allocate memory, so we can't resize the array return false; }
// Call constructors if we increased size for(int i = capacity; i < new_capacity; i++) { new(&new_data[i]) T(); }
// Update the array's data and capacity data = new_data; capacity = new_capacity;
// Update the size if the new capacity is smaller than the current size if (new_capacity < size) { size = new_capacity; }
return true; }
/** * @brief Add an element to the end of the dynamic array * * @param value the value to add to the end of the dynamic array */ bool add(T value) { // Check if we need to resize the array, and if we failed to resize the array // We double the capacity and add 1 to address issues where capacity is 0 initially if (size >= capacity && !resize(capacity * 2 + 1)) { // We didn't have space, and we failed to resize the array! return false; }
// Add the value to the end of the array data[size] = value; size++;
return true; }
/** * @brief read and return the value of the indicated element from the dynamic array. * * If the index is out of bounds, the function will return the indicated default value. * * @param index the index of the element to remove * @param default_value the value to return if the index is out of bounds */ T &get(unsigned int index) { return (*this)[index]; }
/** * Provide array style access to the dynamic array. * * @param index the index of the element to get * @return const T& the element at the given index */ const T &operator[](unsigned int index) const { // Check if the index is out of bounds if (index >= size) { // The index is out of bounds, so return the default value return default_value; }
return data[index]; }
/** * Provide array style access to the dynamic array. * * @param index the index of the element to get * @return T& the element at the given index */ T &operator[](unsigned int index) { // Check if the index is out of bounds if (index >= size) { // The index is out of bounds, so return the default value return default_value; }
return data[index]; }
/** * @brief set the value of the indicated element from the dynamic array. * * If the index is out of bounds, the function will do nothing and return false. * * @param index the index of the element to change * @param value the value to set the element to * @returns true when the value is set, or false if this failed */ bool set(unsigned int index, T value) { // Check if the index is out of bounds if (index >= size) { // The index is out of bounds, so do nothing return false; }
data[index] = value; return true; }};
#endif
A test program
The test program below is assuming the header file above was named dynamic-array.hpp:
#include <cstdio>#include "dynamic-array.hpp"
int main(){ // Create a dynamic array of int // and initialise it to a new dynamic array of 10 elements dynamic_array<int> *array = new dynamic_array<int>(10, -1);
// Print the size and capacity of the array printf("size: %d, capacity: %d\n", array->size, array->capacity);
// Add 15 values to the array for (int i = 0; i < 15; i++) { array->add(i); }
// Reprint the size and capacity of the array after adding printf("size: %d, capacity: %d\n", array->size, array->capacity);
// Print and update the values in the array, using the get and set functions for (int i = 0; i < array->size; i++) { printf("array[%d] = %d\n", i, array->get(i)); array->set(i, i * 2); }
// Attempt to access an element out of bounds using get printf("array[99] = %d\n", array->get(99));
// Attempt to access an element out of bounds using set if (array->set(99, 99)) { printf("array[99] = %d\n", array->get(99)); } else { printf("Failed to set array[99]\n"); }
printf("Before resize - size: %d, capacity: %d\n", array->size, array->capacity); // Change the size of the array array->resize(5);
printf("After resize - size: %d, capacity: %d\n", array->size, array->capacity);
for (int i = 0; i < 20; i++) { printf("array[%d] = %d\n", i, array->get(i)); }
// Free the array and ensure we do not have a dangling pointer array->~dynamic_array(); array = nullptr;
return 0;}